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The space mission design and operations community already recognizes the value of cloud
computing and virtualization. However, natural and valid concerns, like security, privacy,
up-time, and vendor lock-in, have prevented a more widespread and expedited adoption
into official workflows. In the interest of alleviating these concerns, we propose a series of
guidelines for internally deploying a resource-oriented hub of data and algorithms. These
guidelines provide a roadmap for implementing an architecture inspired in the cloud com-
puting model: associative, elastic, semantical, interconnected, and adaptive. The architec-
ture can be summarized as exposing data and algorithms as resource-oriented Web services,
coordinated via messaging, and running on virtual machines; it is simple, and based on
widely adopted standards, protocols, and tools. The architecture may help reduce com-
mon sources of complexity intrinsic to data-driven, collaborative interactions and, most
importantly, it may provide the means for teams and agencies to evaluate the cloud com-
puting model in their specific context, with minimal infrastructure changes, and before
committing to a specific cloud services provider.

I. Introduction

The NIST?® has defined cloud computing as “a model for enabling ubiquitous, convenient, on-demand access
to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service provider
interaction'”. More than a new technology, cloud computing is a model for using existing technology. The
model is based on abstraction, meaning that it favors the what over the how; concepts over concrete devices
(e.g., storage over hard drive, or computing power over workstation).

Abstraction is attained by coordinating the operation of different physical devices using software. The
coordination is such that the total capacity of the underlying hardware can be offered as a continuum, behind
a common interface, and at any level of granularization. A portion of this continuum represents a virtual
service because such portion does not correspond to a physical device, even though it behaves as one. The
process of using software to join together physical devices into a virtual continuum is called virtualization. In
this sense, it is possible to offer an alternative, simpler definition for the cloud: it is simply highly virtualized
infrastructure.?

Virtualization can increase datacenter throughput because it leverages the total capacity of the installed
hardware. Whereas traditionally three users would use three workstations with an average load of 50%,
those same three users could use two workstations joined as one, with an average load of 75%, and a third
workstation standing by, ready to handle spikes in demand. Virtualization can also increase reliability,
because it makes it possible to separate information from specific hardware. This separation makes the
latter immediately replaceable with little or no downtime.

The space mission design and operations community already recognizes the value of the cloud comput-
ing model and virtualization in general.># %6 In fact, some space missions have already included cloud
computing components into their official operational workflow.” However, natural and valid concerns have
prevented a more widespread and expedited adoption. These include vendor lock-in, security, privacy, online
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copyright, liability, and policy enforcement.® As with any new technological trend, organizational inertia
and user resistance also delay adoption.

Independently of the timetable for adopting cloud computing in a given team or agency, we believe that
it is possible to immediately benefit from the model’s philosophy, in a manner which does not conflict with
internal policies or security restrictions, and with little or no infrastructure changes.

In concrete, we propose to map current mission design and operation workflows into well-defined resources
and actions, and expose the corresponding data and algorithms as resource-oriented Web services running
on virtual servers. The proposed architecture may help alleviate common sources of complexity intrinsic to
data-driven, collaborative interactions like:

e Proliferation of Systems
It is natural that highly interdisciplinary activities rely on vastly different computing systems. For
example, the supported operating system for the science team software may be different from the
one running that of the operations team; different operating systems normally translate into different
physical workstations, often in different networks.

e Proliferation of Formats
As the number of teams and systems involved in a workflow increases, so does the number of data
formats. This proliferation leads to the sprawling of ad-hoc data parsers, which often produce output
in even more data formats.

e Proliferation of Protocols
Different teams and systems produce or consume data at different workflow stages and levels of aggre-
gation. The different interfacing requirements lead to the creation of different data exchange protocols:
while one team lead may request a phone call once a product has been created, another may require a
complex database transaction on a given server, or copying files to a common filesystem and notifying
stakeholders via email.

e Siloing of Datasets
Serial workflow activities often interface only at the end. Before the interfacing, datasets within a
given serial component normally remain hidden from the other components. For example, an orbit
determination team may leverage a trajectory covariance analysis to publish an uncertainty plot. In
the long run, the team will have produced a rich covariance dataset, probably unknown to other teams.

In addition to what we perceive as immediate, day-to-day benefits in the design and operation of space
missions, we believe that the proposed architecture may help teams and agencies evaluate the cloud com-
puting model in their specific context, with minimal infrastructure changes, and before committing time or
resources towards the adoption of a specific cloud services provider.

II. The Vision

At the most general level, there are three stages in the lifecycle of space missions: design, operations, and
decommissioning. From a datacenter perspective, they are characterized as follows:

The design stage is centered around computer power and requirements management; it is a race between
engineering design and regulatory compliance. Demand for computing services fluctuates from relatively
slow periods to complex simulations that are fed from multiple data sources and generate vast amounts of
scratch data.

The operations stage is characterized by real-time communication and the coordinated interaction of
dozens of teams; its central concerns are timeliness and accountability, where decision-making is governed by
well established workflows, centered around specific products. Mission data needs to be processed rapidly,
and is typically released to a worldwide network of collaborators, or the public in general.

The decommissioning stage is governed by data storage, classification, indexing, and distribution. It
recognizes that the analysis of space mission data can span decades, and even the most unexpected data
sources can enable or explain discoveries.”

And to keep up with the increasing complexity of space missions, we believe that the next-generation
datacenter will be based on three components of the cloud computing model:
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e Associative Elasticity
From a user perspective, there will be an unlimited amount of readily available computing services,
billed only for actual usage (i.e., no charges for idle-time). Metering will involve such small unit
increments (like computing power in core-minutes, or storage in megabyte-minutes) that it will be
practically continuous.

The provisioning and pricing model will be associative. For example, procuring 1,000 computing cores
for one hour will involve the same effort and expense as procuring one computing core for 1,000 hours;
storing one terabyte of data for one minute will be no different than storing two megabytes for one
year.

e Semantical Hyperdata
Data will be integrated with its metadata, links connecting it to other data or products, and information
about the nature of such connection; access control will be granular to any extent.

A given dataset will be available in different representations: while one user may request a plain-text
tabulation of a given thrust profile, with time in seconds from ¢y and force in Newtons, another may
request a plot of the same data, with horizontal ticks in minutes, vertical ticks in tenths of one Newton,
and a footnote indicating the source telemetry product.

The semantic relationship of datasets, and their availability in any desired format will compound the
information content; in the previous example, either user could have requested a weather report for
the geographical area where telemetry was received.

e Living Workflows

When policy or preference dictate that a given activity should evolve in accordance to a given workflow,
it will be possible to monitor the real-time status at any level of aggregation. For example, while a
maneuver analyst may be interested in receiving immediate notification when the latest orbit determi-
nation is available, a mission manager may wish to concentrate on the overall go/no-go decision on a
given activity.

Notifications will follow a push mechanism®, where well-defined triggers issue relevant status notifi-
cations in real time; it will contrast with the more common poll mechanism, where users repeatedly
inquire for status updates.

It will be possible to incorporate or remove arbitrary units of work from the workflow, in real time,
and without system downtime.

ITI. REST and the Resource-Oriented Architecture

The proposed architecture is based on a more general architectural style for distributed hypermedia systems
called Representational State Transfer (REST), which provides a set of constraints that, when applied as a
whole, emphasize scalability of component interactions, generality of interfaces, independent deployment of
components, and intermediary components to reduce interaction latency, enforce security, and encapsulate
legacy systems.!® There are five fundamental properties of a REST architecture:

e Client-Server
The architecture provides a separation of concerns, where data and algorithms are provided and main-
tained in the server, and offered to clients over a network connection.

e Stateless
Each request contains all of the information necessary for a connector to understand the request,
independent of any requests that may have preceded it. Whether clients maintain state across requests
is immaterial to the server.

e Cacheable
Responses can be stored in a ready-to-deliver manner, and be transmitted to clients without further
processing. Cached responses can dramatically reduce server workload and response latency.

bKnown in computer programming as the Hollywood Principle: don’t call us, we’ll call you.
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e Layered
A client cannot distinguish whether it is connected directly to the master, or to an intermediary along
the way. Layering can be used for load-balancing (a load-balancer receives the request, and routes it
to the least loaded node) and request proxying, where a secondary server responds to specific requests,
thus providing a layer between clients and the master server.

e Uniform
Interaction with resources follows the same protocol, regardless of the underlying data. In REST, this
protocol is strictly HTTP.

The key abstraction of information in REST is a resource; any information that can be named can be a
resource: a document, image, dataset, or temporal service (e.g., the current position of a spacecraft).
Resources are identified by their Uniform Resource Locator, or URL,!! a string which provides an abstract
identification of the resource location. Guidelines have been established for the generic syntax of such
strings,'? and best practices for implementing such guidelines have been identified,'3 '# including:

e use forward slash (/) to indicate a hierarchical relationship
e use comma (,) and semicolon (;) to indicate a non-hierarchical relationship
e use hyphen (-) and underscore (_) to improve readability
e use ampersand (&) to separate parameters
For example, the URL:
http://example.com/ephemeris/position/saturn;sun/

could denote a resource which contains the current EME-2000 position of Saturn with respect to the Sun.
Notice that position is more specific than ephemeris, and ephemeris/position indicates this relationship.
On the other hand, the semicolon between saturn and sun denotes that the relationship between body and
center is non-hierarchical. Additional parameters could be provided in the URL to specify times or frames:

[...]/position/saturn;sun/parameters?utc-epoch=2012-121T00:00:00&frame=emo2000

where the dashes help improve readability and the parameters are clearly separated by ampersand.

Somewhat paradoxically, identifying resources and endowing them with appropriate URLs is simultane-
ously the simplest and most complex part of the proposed architecture. It is the simplest because it requires
only a piece of paper where to write down the resources and their proposed URLs. And it is the most
complex because identifying resources, their hierarchy, and parametrizations can be a daunting task. The
following guidelines can be helpful during the resource identification process:

e Map CRUD operations to resources
Any unit of information subject to a CRUD operation (Create, Read, Update, Delete) is a candidate
resource. As in object-oriented programming, a practical way of identifying resources is to enunciate
the workflow verbally. The grammatical objects (what or whom the verbs are acting upon) tend to
correspond to resources.

e Separate data from views and algorithms
It is common that different teams interact with the same data in different ways. For example, one
team may require a second-by-second tabulation of propellant mass flowrate, while another may simply
require the average. In this case the tabulation corresponds to a view and the average corresponds to
an algorithm on the mass flowrate resource.

e Choose grouping and granularity based on the underlying workflow
If the underlying workflow is mostly separated by subsystem, it makes sense to reflect such separation in
the resource grouping (/power/, /propulsion/, /navigation/, etc.) The workflow action demanding
the most granularity will determine the granularity of the underlying resource.

The core idea behind REST is to leverage HTTP and work in it as opposed to around it. By design,
HTTP provides a rich set of mechanisms to interact with well-defined resources, and REST provides the
architectural means to offer data and services precisely as resources. An HTTP request is made by a client
to a server, and is composed of four major parts:
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e Method
The HTTP method is a verb which indicates what interaction is desired with a resource. The five most
important ones are: GET (read a resource), POST (create a resource), PUT (update a resource), DELETE
(delete a resource), and HEAD (obtain resource metadata).

¢ URL
The URL specifies the resource on which to apply the method. As explained above, the URL uniquely
identifies a resource.

e Headers
Any additional information required to uniquely refine the request can be provided via headers: a
collection of key, value pairs provided in the request.

¢ Body
The contents of the request, like an image or a JSON document.

An HTTP response is returned from a server to a client, and is almost identical to a request. It contains a
response status code which indicates the outcome of the request, headers providing resource metadata,
and body containing the resource representation. The following is a complete HTTP request/response
interaction: The client’s request:

GET /ephemeris/position/saturn;sun/ HTTP/1.1
Host: example.com
Accept: text/csv

The server’s response:

HTTP/1.1 200 OK

Date: Mon, 30 Apr 2012 00:00:00 GMT
Last-Modified: Fri, 27 Apr 2012 05:43:21 GMT
Content-Length: 15000

Content-Type: text/csv

2456047.50, -1.301772228641044E+09, -6.195569431611598E+08, -1.998658771522971E+08
2456047.54, -1.301758617744085E+09, -6.195855778417170E+08, -1.998782903024700E+08
[and more entries; 15,000 bytes of datal

In this interaction, the client requests the current heliocentric position of Saturn as a comma-separated
plain text file (Accept headers). The server successfully processes the request (status code 200 OK), indi-
cates the date when the request was received (Date), the last time the underlying resource was modified
(Last-Modified), the content type provided (Content-Type), the amount of data provided (Content-Length),
and the actual data.

Because HT'TP is standardized, widely supported, and designed around the concept of resources, it can
be used effectively to map data-driven workflows into a computer system. In the remainder of this paper we
will provide specific architectural elements which can help bring current infrastructure closer to this vision,
and propose a tiered approach to adoption and implementation based on specific recommendations.

IV. Architecture Components

In line with the cloud philosophy, the proposed architecture is simple, and based on widely adopted standards,
protocols, and tools. It can be summarized as follows: expose data and algorithms as resource-oriented Web
services, coordinated via messaging, and running on virtual machines. The different design and operation
workflows are then mapped to actions on these Web resources. The building blocks of the architecture are
described below.

A. Virtual Machine

A virtual machine is a unit of a physical server that has been divided into multiple virtual servers, controlled
by software. Each owns a share of the CPU and other physical resources and is supervised by a shared
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Figure 1. A hypervisor is a layer of software running directly on computer hardware. By replacing the
operating system, it allows the computer hardware to run multiple guest operating systems concurrently.

hypervisor, which manages calls for hardware services and resolves conflicts. In Figure 1 we depict an
example where one physical workstation is running three different operating systems simultaneously, and
has capacity for running a fourth one. In addition to taking advantage of every computing cycle available,
deploying virtual environments may enable the permanent support of legacy applications which function
appropriately only on deprecated operating systems. Instead of incurring the difficulty, risk, or expense of
porting the legacy application to a new operating system, it could be deployed in the appropriate virtual
environment and supplied with appropriate hardware resources. The underlying host machine—which would
also host other operating systems and applications—could be upgraded or replaced without disrupting the
availability of the legacy application.

A wide range of providers offer reliable hypervisors. In particular, the Xen hypervisor (http://xen.org)
has been widely adopted by major cloud providers, like Amazon EC2 and Rackspace. Converting a worksta-
tion to a virtual host is a straightforward process, and recent versions of popular operating systems contain
hypervisors in their standard distribution.

B. Message Broker

A message broker is middleware which routes information in an orderly, predictable manner. It provides a
common layer that insulates the user or application developer from the details of the operating system or
software implementation. This layer is useful for reducing dependencies and complexity among heterogeneous
applications. The broker normally runs on a dedicated machine, and stands ready to route messages among
applications, which are producers or receivers of messages (or both). As presented in Figure 2, this separation
enables multiple workflow patterns.

Producer [—| Broker [— Clowsisacy]
Producer
Producer |—| Broker [|— Consumer Consumer «~—| Broker
(a) Work Decoupling (b) Work Streamlining and Decoupling
Consumer Producer \ Consumer
Producer —| DBroker / Broker
Consumer Producer Consumer
(c) Work Distribution (d) Work Aggregation, Distribution, and Decoupling

Figure 2. Different message broker workflow arrangements.

A message broker also serves as the central component of a scalable push-based notification system;
it enables individual applications to issue messages based on arbitrary criteria (like reaching a processing
milestone). The message is broadcasted to any listening application, which in turn can notify users, log the
event, start postprocessing, or execute any action with the incoming message (cf. Figure 3). Applications
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do not need to be aware of their data producers or consumers.

Logfile
od.solution.prime d.solution.* i
Producer Broker e e 1\];3)12;3
o
d'SO]Ution
Pling, Batch Job

Figure 3. In this sample message broadcasting using a broker, the application (Producer) finishes producing an
orbit determination solution for a prime maneuver window; it issues a message with all relevant information to
the exchange od.solution.prime. An application listening on the od.* channel will log any Orbit Determination
event. An application listening specifically for Orbit Determination Solutions is listening on od.solution.x*
and will send an email when a solution is ready. Finally, an application which listens specifically for Orbit
Determination solutions for the prime maneuver window will trigger a batch job.

Enterprise-grade messaging systems based on the standard Advanced Message Queuing Protocol, or
AMQP, are widely available via open-source projects, like RabbitMQ (http://rabbitmq.com) and Apache
Qpid (http://qpid.apache.org). In addition, development is underway for implementations based on
HTTP (http://restms.org).

C. Database

While any organized collection of data can be described as a database, we use the term to refer specifically to a
data management system. Traditional solutions include relational databases, like MySQL (http://mysql.com)
and SQLite (http://sqlite.org), which provide strict ACID® compliance. These table-oriented databases
rely on predefined, strongly typed schemas, and are thus suited for strongly typed applications, where data
structure is constant or changes slowly, and is known a priori.

Recently there has been a surge in the development of non-relational, schema-free, document-oriented
databases, like MongoDB (http://mongodb.org) and CouchDB (http://couchdb.apache.org). These are
normally suited for applications with dynamic typing, where structure evolves constantly, and scalability
and speed are critical. Instead of full ACID compliance, they offer eventual consistency, and atomicity only
at the document level (what would be a row in a table-oriented database).

D. Data Serialization

Space mission design and operations rely on a variety of data formats. While it is not pragmatical or
effective to rewrite all tools to natively support one format, it is indeed possible to provide facades to the
heterogeneous data in a variety of common serialization formats. For example, suppose that the output of
a legacy application is provided in the following plain-text format:

EPOCH: 18-Dec-2012 00:12:34.567891 UTC
FRAME: EME2000
POSITION: 1.234567891D+06 -7.6543210D+06 3.4567891D+02

It is likely that every team which uses such legacy application will write a custom data parser to extract the
relevant information. And even this simple example presents many challenges: most modern languages will
not recognize D as the token indicating exponent? (most recognize only E or e). The output also contains a
date string, and parsing dates is a well known source of bugs in user scripts. Most users will likely rely on
text substitutions and regular expressions; one change to the legacy application output format could result
in breaking the workflow of dozens of teams in different ways.

On the other hand, if a single team is assigned the task of producing and maintaining a serialized format,
they could provide a JSON document containing the same information:

€Atomicity, Consistency, Isolation, and Durability are a set of properties which guarantee that database operations are
transactional: a logical operation either succeeds in full, or is not executed at all.
dtypical in the output of Fortran programs
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{
"epoch":{
"day":18, "month":12, "year":2012,
"hour":0, "minute":12, "second":34.567891,
"is0":"2012-12-18T00:12:34.567891",
"clock":"utc"
},
"frame":"eme2000",
"position": [1.234567891e6, -7.6543210e6, 3.4567891e2]
}

Libraries for parsing JSON documents are available for all major programming languages (cf. http://json.org),
and obtaining the data becomes a simple statement. In Python, for example (assuming the document is
called data.json):

import json # this module is part of the Python Standard Library (version >= 2.6)
with open("data.json", "rb") as fp:

data = json.load(fp)
# data is now available as a native data type (in this case, a Python dictionary)
print(data["position"])
[1234567.8910000001, -7654321.0, 345.67890999999997]
from datetime import datetime # Standard Python Library
ISO_FORMAT = "%Y-%m-%dT/%H:%M:%S.%f" # timestamp format according to ISO 8601
print(datetime.strptime(data["epoch"] ["iso], ISO_FORMAT))
2012-12-18 00:12:34.567891

Other formats, like XML (http://w3.org/XML) and YAML (http://yaml.org), can be used for plain-text
serialization. Binary serialization formats are also available that provide all benefits of plain-text serialization
(except being human readable) and can dramatically enhance performance. BSON (http://bsonspec.org)—
the binary counterpart to JSON—has been adopted as the underlying format for MongoDB, and has been
used successfully in other data-intensive applications.!®

E. HTTP Server

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hy-
permedia information systems;'® it drives Internet communication. HTTP server technology is well known,
and reliable products are available that are normally included in the standard distribution of popular oper-
ating systems. Apache (http://httpd.apache.org) and nginx (http://nginx.org), which together power
almost 75% of the Internet hosts, offer ready-to-deploy configurations for a vast array of Web service con-
figurations.

For internal applications, it is possible to deploy the HTTP server in the Local Area Network, behind
the institutional firewalls, and leverage existing user authentication services (e.g., LDAP).

F. Web Applications

A Web application is a computer program which can respond to HTTP requests. There are dozens of frame-
works for their development, like those based on popular dynamic languages like Python (http://python.org),
Ruby (http://ruby-lang.org), and PHP (http://php.net), which have been favored by the major Inter-
net players.

The Python programming language offers a simple and universal interface between Web servers and
Web applications (the Web Server Gateway Interface, or WSGI'7); Apache and nginx support the interface
specification. As for other popular programming languages, powerful and widely available libraries exist that
can connect Python applications to a variety of databases and message brokers. The Python source code for
the canonical WSGI application is as simple as follows:

def application(environ, start_response):
status = "200 OK"
headers = [("Content-type", "text/plain")]
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start_response(status, headers)
return [u"Hello, World!'\n"]

G. Web Clients

A Web client is a computer program which can interact with a Web application. The most widely deployed
(and most familiar) client is the Web browser, which generally retrieves Web pages for visual navigation. How-
ever, a wide variety of clients can be easily built with standard libraries that can interact with Web services
in a variety of formats. For example, if a JSON data source were available at http://example.com/data/,
a command line application capable of retrieving it could be as simple as:

import httplib # Python Standard Library

import json # Python Standard Library

connection = httplib.HTTPConnection("example.com") # open server connection
headers = {"Accept":"application/json"} # specify JSON as the desired format
connection.request ("GET", "/data/", headers=headers)

data = json.loads(connection.get_response().read())

# do something with ‘‘data‘‘...

V. Tiered Path to Implementation

We outline the implementation of the proposed architecture following a series of guidelines:

1. Adopt a common data-interchange format

The main concern in the architecture is to make data usable. Whether data comes from a legacy application
with frozen development, or as the output of the most recently engineered software tool, it should be
provided in a common format. And providing homogeneous formats does not necessarily imply modifying
the underlying application; simple parsers and data wrappers built for legacy applications can often provide
all required functionality.

JSON is particularly well suited for structured datasets with heterogeneous types. It is simpler, more
flexible, and more compact than XML, yet it retains human readability and a rich offer of reliable libraries
for all major languages.

2. Fvolve raw data to semantical hyperdata

Upon adopting a common data format, it becomes possible to incorporate a common meta-information
field. Common meta-information includes authorship (user, date, time, software version), data sources
(telemetry product, planetary constants), intended purpose (mission, instrument calibration, maneuver im-
plementation), expiration (time span), and cross-check tags (whether a product has been reviewed by key
stakeholders).

Linked data compounds information content, and simplifies cross-checking critical products. For example,
upon detecting a bug, it becomes simpler to recall all products made with the faulty software version. In
practice, JSON data can be annotated with a meta key.

3. Decompose workflows into simple actions

While space missions tend to evolve according to strictly defined workflows, it it nevertheless possible to
further divide activities into simple actions. For example, a unit of work which receives an orbit determination
and produces a maneuver design can be further defined into retrieving the orbit determination, running
a trajectory optimizer, producing design data, integrating data into specific products, and delivering the
maneuver design.

Simpler actions tend to map naturally as resources, and enable software to emit alerts upon start or com-
pletion in a more granular level. This simplification enables the real-time status monitoring, and simplifies
root, cause analysis in the event of workflow anomalies.
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4. Categorize data and algorithms as resources

As explained in Section III, the identification of resources can be simplified by mapping as resources those
entities which undergo CRUD operations. Algorithms and workflow stages should also be mapped as re-
sources. Adhering to the URL specification!! and following best practices'® can simplify the development of
clients and servers, and provide a solid foundation to build complex workflows oriented to specific resources
with transparency.

5. Provide a common interface to resources via HTTP

The interaction between users and data should be available via an unified interface, capable of receiving
simple requests from generic clients. HT'TP accomodates this mechanism via the standard verbs, which map
to operations on resources as follows:

Verb Operation

HEAD read the metadata provided in a resource’s headers
GET read a resource in a specified representation

POST create a resource by providing a specific representation
PUT update a resource in whole or in part

DELETE delete a resource

6. Deploy worker and data nodes and applications in virtual machines

Virtual machines provide the foundation to an elastic system, capable of supporting multiple operating
systems, and configurable in real time. And this benefit can be captured without the need of multiple
workstations.

A typical approach to virtualization is to deploy a fresh install of the desired operating system as a virtual
machine, install only the required components to provide a well-defined functionality, and save and store the
resulting image.

Creating and maintaining an inventory of images provides unprecedented advantages, because it enables
teams and agencies to deploy an arbitrary number of working nodes delivering a specific functionality both
in the internal datacenter and in the infrastructure of commercial cloud services providers.

7. Coordinate the system interaction via messaging

The separation of concerns provided by message brokers constitutes a flexible model for growth, adaptation,
and reliability. The basic unit of work then becomes:

Database

Read / Write

. Receives Unit Of Emits .
Work

Figure 4. The unit-of-work in the architecture

The model allows for arbitrary units of work to be added or removed from the workflow. It also provides
the means for monitoring in real time the evolution of activities with push notifications.

VI. Conclusions

In the interest of expediting the adoption of the cloud computing model within the space mission design
and operations community, we propose an architecture based on widely adopted standards, protocols, and
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tools. We describe specific implementations of tools that can provide specific functionalities, and have been
field-tested by the Internet and cloud computing communities at large.

We propose a path to implementation based on a set of specific guidelines which can be applied incre-
mentally, with little or no infrastructure changes, and converge toward a vision of elasticity, homogeneity,
and workflow flexibility that can provide access to living systems interchaning highly semantical data.

We believe that the proposed architecture can enable current teams and agencies to evaluate the cloud
computing model in their specific context and, independently of their timetable for eventual adoption or
selection of a cloud provider, these teams and agencies may capture immediate benefits.
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